Polar Review

Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

$$8)\left(3,\frac{\pi}{2}\right)$$

Plot the point whose polar coordinates are given. Then find the Cartesian coordinates of the point.

$$17) \left(2\sqrt{2}, \frac{3\pi}{4}\right)$$

The Cartesian coordinates of a point are given. Plot the point and then find 4 polar representations of the curve

9)
$$(2\sqrt{3},-2)$$

The Cartesian coordinates of a point are given. Plot the point and then find 4 polar representations of the curve

19)
$$(-1, -\sqrt{3})$$

12. r = 2

$$r\cos\theta = 1$$

$$r = 3\sin\theta$$

$$r = \tan \theta \sec \theta$$

16. x = 3

$$x^2 + y^2 = 9$$

$$x = -y^2$$

$$x + y = 9$$

Sketch the curve with the given polar equation

$$r = 5\sin\theta$$

$$r = -5\cos\theta$$

Sketch the curve with the given polar equation

$$r = 2 - 2\sin\theta$$

$$r = -3 + 2\cos\theta$$

Sketch the curve with the given polar equation

$$r = 3 + 4\cos\theta$$

$$r = 4\cos 2\theta$$

- a) Find where each of the curves is when $\theta = 0$.
- b) Find where each of the curves is when $\theta = \frac{\pi}{2}$
- c) Using your information from parts a and b identify the direction the curve is moving.
- d) Find when each curve is at the pole. e)Find where the 2 curves intersect.
- 26. the circle $r = 3\cos\theta$ and the cardiod $r = 1 + \cos\theta$

- a) Find where each of the curves is when $\theta = 0$.
- b) Find where each of the curves is when $\theta = \frac{\pi}{2}$
- c) Using your information from parts a and b identify the direction the curve is moving.
- d) Find when each curve is at the pole. e)Find where the 2 curves intersect.
- 27. the circle r = 2 and the cardiod $r = 2(1 \sin \theta)$

